
*

9.1 Fourth Racket Programming Assignment Specification

Fourth Racket Programming Assignment Specification

...

...

...

Working within the DrRacket PDE, please do each of the following tasks. The first five tasks pertain to straight-
forward recursive list processing. The remaining tasks pertain to list processing with higher order functions. The
final task, which you might like to work on from the start, is the document compilation/posting task, which as usual
amounts to crafting a single structured document that reflects your work on each programming task, and saving it
as a pdf file.



*

9.2 Task 1 - Generate Uniform List

Task 1 - Generate Uniform List

*

9.3 Specification

Specification

Define a recursive function called generate-uniform-list according to the following specification:

1. The first parameter is presumed to be a nonnegative integer.

2. The second parameter is presumed to be a Lisp object.

3. The value of the function will be a list of length equal to the value of the first parameter containing just that
many instances of the value of the second parameter.

*

9.4 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( generate-uniform-list 5 ’kitty )
’(kitty kitty kitty kitty kitty)
> ( generate-uniform-list 10 2 )
’(2 2 2 2 2 2 2 2 2 2)
> ( generate-uniform-list 0 ’whatever )
’()
> ( generate-uniform-list 2 ’(racket prolog haskell rust) )
’((racket prolog haskell rust) (racket prolog haskell rust))
>

*

9.5 Task

Task

Write the recursive function definition, mimic the demo, and build the source and the demo into your presentation
document.



*

9.6 Task 2 - Association List Generator

Task 2 - Association List Generator

*

9.7 Specification

Specification

Define a recursive function called a-list according to the following specification:

1. The first parameter is presumed to be a list of objects.

2. The second parameter is presumed to be a list of objects of the same length as the value of the first parameter.

3. The value of the function will be a list of pairs obtained by “consing” successive elements of the two lists.

*

9.8 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( a-list ’(one two three four five) ’(un deux trois quatre cinq) )
’((one . un) (two . deux) (three . trois) (four . quatre) (five . cinq))
> ( a-list ’() ’() )
’()
> ( a-list ’( this ) ’( that ) )
’((this . that))
> ( a-list ’(one two three) ’( (1) (2 2) ( 3 3 3 ) ) )
’((one 1) (two 2 2) (three 3 3 3))
>

*

9.9 Task

Task

Write the recursive function definition, mimic the demo, and build the source and the demo into your presentation
document.



*

9.10 Task 3 - Assoc

Task 3 - Assoc

*

9.11 Specification

Specification

Define a recursive function called assoc according to the following specification:

1. The first parameter is presumed to be a lisp object.

2. The third parameter is presumed to be an association list.

3. The value of the function will be the first pair in the given association list for which the car of the pair equals
the value of the first parameter, or ’() if there is no such element.

*

9.12 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( define al1

( a-list ’(one two three four ) ’(un deux trois quatre ) )
)

> ( define al2
( a-list ’(one two three) ’( (1) (2 2) (3 3 3) ) )

)
> al1
’((one . un) (two . deux) (three . trois) (four . quatre))
> ( assoc ’two al1 )
’(two . deux)
> ( assoc ’five al1 )
’()
> al2
’((one 1) (two 2 2) (three 3 3 3))
> ( assoc ’three al2 )
’(three 3 3 3)
> ( assoc ’four al2 )
’()
>

*

9.13 Task

Task

Write the recursive function definition, mimic the demo, and build the source and the demo into your presentation
document.



*

9.14 Task 4 - Rassoc

Task 4 - Rassoc

*

9.15 Specification

Specification

Define a recursive function called rassoc according to the following specification:

1. The first parameter is presumed to be a lisp object.

2. The third parameter is presumed to be an association list.

3. The value of the function will be the first pair in the given association list for which the cdr of the pair equals
the value of the first parameter, or ’() if there is no such element.

*

9.16 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( define al1

( a-list ’(one two three four ) ’(un deux trois quatre ) )
)

> ( define al2
( a-list ’(one two three) ’( (1) (2 2) ( 3 3 3 ) ) )

)
> al1
’((one . un) (two . deux) (three . trois) (four . quatre))
> ( rassoc ’three al1 )
’()
> ( rassoc ’trois al1 )
’(three . trois)
> al2
’((one 1) (two 2 2) (three 3 3 3))
> ( rassoc ’(1) al2 )
’(one 1)
> ( rassoc ’(3 3 3) al2 )
’(three 3 3 3)
> ( rassoc 1 al2 )
’()
>

*

9.17 Task

Task

Write the recursive function definition, mimic the demo, and build the source and the demo into your presentation
document.



*

9.18 Task 5 - Los->s

Task 5 - Los->s

*

9.19 Specification

Specification

Define a recursive function called los->s according to the following specification:

1. The first and only parameter is presumed to be a list of character strings.

2. The value of the function will a string containing the strings found in the value of the parameter separated by
spaces.

*

9.20 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( los->s ’( "red" "yellow" "blue" "purple" ) )
"red yellow blue purple"
> ( los->s ( generate-uniform-list 20 "-" ) )
"- - - - - - - - - - - - - - - - - - - -"
> ( los->s ’() )
""
> ( los->s ’( "whatever" ) )
"whatever"
>

*

9.21 Task

Task

Write the recursive function definition, mimic the demo, and build the source and the demo into your presentation
document.



*

9.22 Task 6 - Generate list

Task 6 - Generate list

*

9.23 Specification

Specification

Define a recursive function called generate-list according to the following specification:

1. The first parameter is a nonnegative integer.

2. The second parameter is a parameterless function that returns a lisp object.

3. The function returns a list of length equal to the value of the first parameter containing objects created by
calls to the function represented by the second parameter.

*

9.24 Some auxiliary code to support the demo

Some auxiliary code to support the demo

( define ( roll-die ) ( + ( random 6 ) 1 ) )

( define ( dot )
( circle ( + 10 ( random 41 ) ) "solid" ( random-color ) )

)

( define ( random-color )
( color ( rgb-value ) ( rgb-value ) ( rgb-value ) )

)

( define ( rgb-value )
( random 256 )

)

( define ( sort-dots loc )
( sort loc #:key image-width < )

)

*

9.25 Demo 1

Demo 1

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> ( generate-list 10 roll-die )
’(6 2 5 6 3 3 2 3 1 6)
> ( generate-list 20 roll-die )
’(3 2 5 4 3 3 5 1 4 6 1 6 6 2 5 6 1 1 2 6)
> ( generate-list 12

( lambda () ( list-ref ’( red yellow blue ) ( random 3 ) ) )
)

’(yellow yellow blue yellow blue blue blue blue blue red blue yellow)
>



*

9.26 Demo 2

Demo 2



*

9.27 Demo 3

Demo 3

*

9.28 Task

Task

Write the recursive function definition, mimic the three demos, and build the source code and the three demos into
your presentation document.



*

9.29 Task 7 - The Diamond

Task 7 - The Diamond

*

9.30 Specification

Specification

Using what you learned from Task 6 as a hint, define a function called diamond that is consistent with the following
specification:

1. The sole parameter is a number indicating how many diamonds will be featured in the design.

2. The function returns an image which consists of the number of diamonds specified by the parameter, where
each diamond is randomly colored and has a side length between 20 and 400.

*

9.31 Demo 1

Demo 1



*

9.32 Demo 2

Demo 2

*

9.33 Task

Task

Write the function recursive function definition, mimic the two demos, and build the source code and the two demos
into your presentation document.



*

9.34 Task 8 - Chromesthetic renderings

Task 8 - Chromesthetic renderings

*

9.35 Specification

Specification

Define a function called play according to the following specification:

1. The sole parameter is a list of pitch names drawn from the set {c, d, e, f, g, a, b}.

2. The result is an image consisting of a sequence of colored squares with black frames, with the colors determined
by the following mapping: c→blue; d→green; e→brown; f→purple; g→red; a→gold; b→orange.

Constraint: Your function definition must use map twice and foldr one time.

*

9.36 Some auxilliary for you to use

Some auxilliary for you to use

( define pitch-classes ’( c d e f g a b ) )
( define color-names ’( blue green brown purple red yellow orange ) )

( define ( box color )
( overlay
( square 30 "solid" color )
( square 35 "solid" "black" )

)
)

( define boxes
( list
( box "blue" )
( box "green" )
( box "brown" )
( box "purple" )
( box "red" )
( box "gold" )
( box "orange" )

)
)

( define pc-a-list ( a-list pitch-classes color-names ) )
( define cb-a-list ( a-list color-names boxes ) )

( define ( pc->color pc )
( cdr ( assoc pc pc-a-list ) )

)

( define ( color->box color )
( cdr ( assoc color cb-a-list ) )

)



*

9.37 Demo

Demo

*

9.38 Task

Task

Write the function definition subject to the various constraints, mimic the demo, and build the source code and the
demo into your presentation document.



*

9.39 Task 9 - Diner

Task 9 - Diner

*

9.40 Specification

Specification

Imagine a diner which has a menu of exactly 6 items. Furthermore, assume the menu is maintained as an association
list of item/price pairs. Also, assume that the items sold for a day are maintained as a linear list. With this in mind,
define a function called total according to the following specification:

1. The first parameter is a linear list of the items sold over some period of time.

2. The second parameter is an item that appears on the menu.

3. The result is the total amount of money collected on the sale of the given item over the period of time.

Constraint: Your function definition must use map one time and filter one time and foldr one time.

Hints: (1) You might want to write a function which takes the name of an item as its sole parameter and returns
the price of the item. (2) Lambda functions can be very useful.

*

9.41 Demo

Demo

Welcome to DrRacket, version 8.1 [cs].
Language: racket, with debugging; memory limit: 128 MB.
> menu
’((hamburger . 5.5) (grilledcheese . 4.5) (malt . 3) (coke . 1) (coffee . 1) (pie . 3.5))
> sales
’(hamburger
coke
grilledcheese
malt
grilledcheese
coke
pie
coffee
hamburger
hamburger
coke
hamburger
malt
hamburger
malt
pie
coffee
pie
coffee
grilledcheese
malt
hamburger



hamburger
coke
pie
coffee
pie
coffee
hamburger
malt
hamburger
malt)

> ( total sales ’hamburger )
49.5
> ( total sales ’hotdog )
0
> ( total sales ’grilledcheese )
13.5
> ( total sales ’malt )
18
> ( total sales ’coke )
4
> ( total sales ’coffee )
5
>

*

9.42 Task

Task

Write the function definition subject to the various constraints, create a demo of your own with a different menu
of exactly six items and an appropriate sales list of at least 30 items, and build your source and the demo into your
presentation document.



*

9.43 Task 10 - Wild Card

Task 10 - Wild Card

Imagine a function that does something a little bit interesting in some respect, one that you can implement using at
least two of the following functions: “filter”, “map”, “foldr”.

*

9.44 Task

Task

Provide a specification of the function, much like I have done for the first nine problems in this programming chal-
lenge. Define the function. Run a demo. Then build the specification and the source and the demo into your
presentation document.

*

9.45 Task 11 - Document Compilation/Posting

Task 11 - Document Compilation/Posting

Craft a nicely structured document that contains:

1. A nice title, indicating that this is your fourth Racket assignment.

2. A nice learning abstract, which artfully says something about recursive list processing and list processing with
higher order functions.

3. A section that provides the code and the demo for Task 1

4. A section that provides the code and the demo for Task 2

5. A section that provides the code and the demo for Task 3

6. A section that provides the code and the demo for Task 4

7. A section that provides the code and the demo for Task 5

8. A section that provides the code and the demos for Task 6

9. A section that provides the code and the demos for Task 7

10. A section that provides the code and the demo for Task 8

11. A section that provides the code and the demo for Task 9

12. A section that provides the specification and the code and the demo for Task 10

Post your document to you web work site.

*

9.46 Due Date

Due Date

Please complete your work on this assignment, and post your work to your web work site, by the end of the day on
Friday, October 29, 2021.


